Introduction to satellite constellations orbital types, uses and related facts

Dr Lloyd Wood

space team, Cisco Systems http://www.cisco.com/go/space

Guest lecture, ISU summer session July 2006

All orbits are ellipses

- Kepler's first law
 Earth mass M at focus of an ellipse. Circular orbit is just a 'special case' of the ellipse, where the two focii are positioned together to form one.
- Kepler's second law equal areas covered in equal times.

Most useful for communications – geostationary Earth orbit (GEO)

- Altitude (35786km) chosen so that satellite moves at same angular velocity as Earth's rotation, so appears still. (period: 1 sidereal day.)
- Three satellites spaced equally around the Equator cover most of Earth – but not the poles. (Arthur C. Clarke, 1945)
- Inmarsat's I-4 BGAN is nearest match to this.
 (2 of 3 satellites launched.)

Most useful for communications – geostationary Earth orbit (GEO)

- Altitude (35786km) chosen so that satellite moves at same angular velocity as Earth's rotation, so appears still. (period: 1 sidereal day.)
- Three satellites spaced equally around the Equator cover most of Earth – but not the poles. (Arthur C. Clarke, 1945)
- Inmarsat's I-4 BGAN is nearest match to this.
 (2 of 3 satellites launched.)

Satellite antennas tailor footprints

- Satellites don't always support perfectly spherical coverage areas.
- Shaped spotbeams let you concentrate coverage and power where you want it.
- Movable antennas let you provide more support (traffic) to a region on demand.

Inclined geosynchronous orbit

- Geostationary satellite reaches end of its planned life – stationkeeping fuel has run out, satellite moves in the sky south/north of the Equator. Can be used give a few hours' connectivity cheaply each day for polar research stations.
- Forms a figure-of-eight groundtrack throughout the day. Investigated for use for mid-latitude Japan to give high-bandwidth comms with smaller footprints.

Useful highly elliptical orbits (HEO)

- Molnya (0.5*sd* ~12hr) and Tundra (~24hr 1*sd* orbits)
 – cover high latitudes at apogee.
- Invented by Soviet military; then Russian satellite television in 1960s. 63.4^o inclination.

Useful highly elliptical orbits (HEO)

- Molnya (0.5*sd* ~12hr) and Tundra (~24hr 1*sd* orbits)
 – cover high latitudes at apogee.
- Invented by Soviet military; then Russian satellite television in 1960s. 63.4° inclination.

Useful highly elliptical orbits (HEO)

- Molnya (0.5*sd* ~12hr) and Tundra (~24hr 1*sd* orbits)
 – cover high latitudes at apogee.
- Invented by Soviet military; then Russian satellite television in 1960s. 63.4^o inclination.
- Sirius Radio adopts this model over the continental US. (XM Radio has two GEO satellites, Sirius plans new GEO sat for diversity.) Yellow circular GEO orbit shown for scale

Optimal elliptical constellation

- Four satellites provide visibility to the entire Earth (Draim, 1987).
- Earth always inside a tetrahedron.
- Assumes Earth is flat satellites often very low above horizon, easily obscured. Not built.
- Huge 2sd ~48-hr orbits with repeating groundtracks.

Optimal elliptical constellation

- Four satellites provide visibility to the entire Earth (Draim, 1987).
- Earth always inside a tetrahedron.
- Assumes Earth is flat satellites often very low above horizon, easily obscured. Not built.
- Huge 2*sd* ~48-hr orbits with repeating groundtracks.

Optimal elliptical constellation

- Four satellites provide visibility to the entire Earth (Draim, 1987).
- Earth always inside a tetrahedron.
- Assumes Earth is flat satellites often very low above horizon, easily obscured. Not built.
- Huge 2sd ~48-hr orbits with repeating groundtracks.

Ellipso – John E. Draim again

- Use of elliptical apogee to provide service at the northern high polar regions.
- Circular MEO orbit covers equatorial areas.
- Coverage of south poor: 'my business plan can do without the people on Easter Island.' – David Castiel, *Wired* 1.05
- Business plan to sell voice telephony. Oops. Not built.
 Merged into ICO.

Shadowing and urban canyons

 No. of satellites you can see above horizon is *diversity*.

Galileo – lots of satellites in view.

Shadowing and urban canyons

- No. of satellites you can see above horizon is *diversity*.
- But buildings/trees block your view of the horizon, limiting the number of satellites you can see.
- Skyscrapers and urban canyons mean no view of the sky (why *Sirius Radio* and *XM Radio* build city repeaters).

Galileo – lots of satellites in view. ...if you're not standing in a city street.

Navigation constellations

- Galileo and GPS

 (and Glonass)
 need to have high satellite diversity.
- You really need to see at least four satellites for a quick and accurate positioning fix (including height).

It's all about system capacity

- Multiple spotbeams let you reuse precious frequencies multiple times, increasing use.
- Reuse of frequencies by different spotbeams over multiple satellites increases overall system capacity.

ICO satellite footprint approximation

It's all about system capacity

- Multiple spotbeams let you reuse precious frequencies multiple times, increasing use.
- Reuse of frequencies by different spotbeams over multiple satellites increases overall system capacity.

7-colour frequency reuse

ICO satellite footprint approximation

Walker star constellations

- Walker star geometry, based on Adams/Rider 'streets of coverage'. Best diversity at poles, worst at Equator.
- Has orbital seam where ascending and descending planes pass each other and must overlap.

Walker star constellations

- Walker star geometry, based on Adams/Rider 'streets of coverage'. Best diversity at poles, worst at Equator.
- Has orbital seam where ascending and descending planes pass each other and must overlap.
- Only operating example: *Iridium* (Voice telephony. Went through bankruptcy protection 1999-2001.)

Walker star constellations

- Walker star geometry, based on Adams/Rider 'streets of coverage'. Best diversity at poles, worst at Equator.
- Has orbital seam where ascending and descending planes pass each other and must overlap.
- Only operating example: *Iridium* (Voice telephony. Went through bankruptcy protection 1999-2001.)

Ballard rosette (also Walker delta)

- Best diversity at midlatitudes.
- Usually no coverage at poles; not global.
- Only operating LEO example: *Globalstar* (Voice telephony. Also went through US bankruptcy protection after *Iridium* did, 2002-2004.)

no orbital seam; ascending and descending satellites overlap

Ballard rosette (also Walker delta)

- Best diversity at midlatitudes.
- Usually no coverage at poles; not global.
- Only operating LEO example: *Globalstar* (Voice telephony. Also went through US bankruptcy protection after *Iridium* did, 2002-2004.)

ascending and descending satellites overlap

A star is a rosette cut in half

- ★ ascending satellites
- descending satellites
- --- orbital seam

constellations offset slightly for clarity

Topologically speaking, a rosette is a torus mapped onto a sphere; a Walker star is half a torus stitched onto a sphere. A star has *one* surface of satellites over the Earth, a rosette, *two*.

 1994: 840 satellites – announced the largest network system *ever*.

- 1994: 840 satellites announced the largest network system *ever*.
- Until 1997: planned 288 satellites. Still biggest!

- 1994: 840 satellites announced the largest network system *ever*.
- Until 1997: planned 288 satellites. Still biggest!
- Also most intersatellite links; redundant mesh even crossing the seam.

- 1994: 840 satellites announced the largest network system *ever*.
- Until 1997: planned 288 satellites. Still biggest!
- Also most intersatellite links; redundant mesh even crossing the seam.
- Until 2002, down to thirty MEO satellites...
- Then bought *ICO Global* (which planned ten MEO sats for telephony; only one in orbit.)

Continuous coverage only needed for continuous communication

 Orbcomm is a 'little LEO' constellation for simple messaging. Satellites are just simple VHF repeaters. Message delivered to ground station when satellite is in view.

 Store and forward – but here it's at the sender, not on the satellite.

• ...and US bankruptcy protection 2000-2001.

LEO remote sensing satellites

- LEO sun-synchronous orbits (inclination varies with altitude) are very useful; satellite ascends over the Equator at the same time every day everywhere on Earth. Makes it easier to calibrate, correct and compare your images. E.g Landsat, growing commercial imaging market.
- Also GEO imaging satellites for wide-area weather patterns, e.g. *Meteosat*.
- Triana Al Gore proposed imaging from Earth-Sun Lagrange L1 point. He didn't win there, either.

Disaster Monitoring Constellation

- Single plane of four sunsynchronous imaging satellites, ascending at 10:15am over Equator. Fifth satellite at 10:30am.
- Gives overlapping daily coverage of any point on the Earth's surface.
- Coverage map shows 600km pushbroom imaging swath – large area by LEO imaging standards.

Disaster Monitoring Constellation

- Single plane of four sunsynchronous imaging satellites, ascending at 10:15am over Equator. Fifth satellite at 10:30am.
- Gives overlapping daily coverage of any point on the Earth's surface.
- Coverage map shows 600km pushbroom imaging swath – large area by LEO imaging standards.

Other sensing satellites

- Radar imaging satellites don't have the daytime restrictions of imaging satellites – but night is still a strain on batteries.
- So these can be sunsynchronous at dawn and dusk – riding the day/night terminator, solar cells always in sunlight.

Quick overview of Earth orbits

- Polar view compares altitudes as if all orbits lie on Equator.
- Van Allen belts and radiation environment simplified – solar wind pushes them out of circular.

How to describe an orbit?

 Two-line element (TLE) format designed by NORAD, introduced November 1972.

NORAD# Int. Desig. epoch of TLE 1st/2nd mean motion deriv. drag orbital model to use NNNNNC NNNNNAAA NNNNN.NNNNNNN +.NNNNNNN +NNNNN-N +NNNNN-N N NNNN 2

NORAD# orbital elements (inc, RAAN, e, arg. p., mean an.) mean motion revs. info

126th day INTELSAT 506 1 14077U 83047A 97126.05123843 -.00000246 00000-0 10000-3 0 721 **2** 14077 5.1140 60.2055 0003526 327.1604 183.6670 1.00269306 18589

weak one-digit line checksums.

year of epoch. TWO-DIGIT. NOT Y2K COMPLIANT!

year of launch, before ID in year. But claimed good until... 2056.

Sample FORTRAN code can be found.

Summary

This talk has outlined:

- Overview of satellite orbits and coverage.
- Their advantages and uses.
- A number of unsuccessful business plans that were unable to make advantage of the advantages.

Questions? Thankyou

Lloyd Wood http://www.ee.surrey.ac.uk/L.Wood/

oh, just google...

